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Dynamics of Interacting Species for a 
Consumer Resource System 

Praise-God Madueme, Godwin C. E. Mbah 

 

Abstract— The nature of interaction in a consumer resource system is very complex and has been studied 
extensively using different types of functional response. In this study, we consider the hyperbolic functional response to 
study a consumer resource model with alternative food source.  In particular, we were able to investigate the 
coexistence of interacting species with the presence of unique alternative resources and also look at variations in 
resources and consumer biomass as a function of their interactions. The model was generated using a set of five 
ordinary differential equations. In the analysis of the study, it was discovered that our model shows that in order to 
promote long term coexistence, consumers must depend on unique alternative resources. 

Index Terms— Alternative resources, competition, functional response, specie coexistence, threshold quantity. 

——————————      —————————— 
 

1. INTRODUCTION 

Many ecological systems consists of multiple species of consumers and resources and understanding how these 
species coexist is a big challenge in ecology [1], [8], [10], [7]. Understanding consumer resource population 
dynamics is important to understanding of the overall ecology of systems [2]. A lot of studies on dynamics of 
ecological systems focus on single resource and consumer populations [6], [5], [4] and did not consider 
multiple species coexistence (MSC).However, in reality, the nature of interactions among these species vary 
significantly, and thus will not be simple (homogeneous). The effect of heterogeneity helps in understanding 
the dynamics of most ecosystems [2]. A threshold quantity, the consumption number C0 is used to quantify 
resource consumption per equivalent of consumer biomass and used to highlight multiple species effects on 
population dynamics [3]. In this paper, we will extend [3] by introducing an alternative resource (that is, n = 3 
for the resources) in addition to gaining a fuller understanding of the dynamics of most ecosystems to where 
coexistence of species is promoted. We will investigate the impact of the presence of unique resources to the 
two consumers in order to promote coexistence and discuss the long-term dynamics. 

 

 

 

 

 

 

 

 

 

———————————————— 
• Praise-God Madueme  is currently pursuing PhD degree program in 

Applied Mathematics in University of Nigeria, Nsukka. E-mail: praise-
god.madueme@unn.edu.ng 

• Godwin C. E. Mbah  is a Professor in Applied Mathematics in University 
of Nigeria, Nsukka. E-mail: godwin.mbah@unn.edu.ng (This information is 
optional; change it according to your need.) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018                                                 168 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org 

1.1 Consumer resource model for a multiple species coexistence ecosystem. 
In order to incorporate MSC in a consumer resource model, we assume that consumers are made up of n 
patches or groups (Xi, i = 1, 2, . . . , n) while resources are also partitioned in the same way (Yi, i = 1, 2, . . . , n). In 
simplicity, each consumer has a unique resource while they both feed on a particular resource. We also note 
the fact that the two consumers move in the time of scarcity of the common resource to resort to their unique 
alternatives. Based on these assumptions, the consumer resource population model is 
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with subscript i denoting variables or parameters for patch i. Table 1 describes the meaning and units of the 
variables and parameters.

 
 

2 Consumer resource multiple species coexistence model (1) for n=3. 

Our interest in this section is to consider the case where there are three resources and two consumers in the 
system. When we analyze this special case, we gain insight into the dynamics of the general n-groups MSC 
model (1). When n = 3 for Xi and n = 2 for Yi, model (1) reduces to 
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A possible real life example can be a savanna where grazers (Y1) feed on grass (X1), browser (Y2) feed on trees 
(X2), both grazers (Y1) and browser(Y2) have a common food (X3) that both can feed on. 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018                                                 169 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org 

 
Variables/Parameters Meaning Unit 

Xi  Density of resources i  g/m2 

Yi  Density of consumers i g/m2 

ri  Growth rate of Xi /year 
Ki  Carrying capacity of Xi  g/m2 

αi  Xi removal by Yi  /year 

βi  Xi when αi is half (half saturation 
constant)  

g/m2 

ci  Conversion of Xi biomass into Yi 
biomass  

Dimensionless 

τi  Reduction of Yi due to other factors /year 
Table 1: Variables and Parameters for model (1). 
 
2.1 Basic analyses of model (2). 
The system (2) has the following equilibrium points: 
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We remark that for each of the equilibrium points Ei (for i = 1, 2, . . . , 10) to exist, the inequalities 0≤Xi≤Ki must 
be satisfied by each of them. Furthermore, for each of the equilibrium points E6, E7, E8, E9, E10 to exist, they must 
each satisfy the inequalities:  

131 τα −c ˃0, 111 τα −c ˃0, 222 τα −c ˃0, 232 τα −c ˃0.  
 
We use a threshold quantity (consumption number denoted by C0) that gives a condition under which the 
equilibrium points of the system are stable. This quantity is similar to the basic reproduction number Ro [9] in 
epidemiological models and Co is calculated in the same way using the next generation matrix approach [3]: 
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Ecologically, 0C  can be understood as the parameter combination ensuring the resource consumption required 

for survival. So, 0C = 1 signifies that the consumer utilizes resource biomass at a rate almost equivalent to their 

own biomass loss. For 0C  < 1 less resource is consumed per unit of consumer biomass loss. For 0C  > 1 more 

resource is consumed per unit of consumer biomass loss. 
 
2.2 Stability analyses of model (2). 
The stability analysis of this model is a tool that will help us to describe the short-term and long-term dynamics 
of the system. We will investigate the stability using the threshold quantity C0. 
 
Theorem 1. The equilibrium points E1, E2, E3, E4 are unstable irrespective of the value of C0. 
Proof. We show that for each of these equilibrium points at least one of the eigenvalues of the 
Jacobian of the model (2), evaluated at the equilibrium points, has a positive real part. The eigenvalues of (2) at 
the trivial equilibrium point E1 are 22 r=λ , 33 r=λ , 14 τλ −= , .24 τλ −=  
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Hence, E1 is unstable despite the value of C0. The eigenvalues of (2) at the equilibrium point E2 are 
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Hence, E2 is unstable despite the value of C0. Similarly, we can show that E3, E4 are unstable despite the value of 
C0. 
 
Theorem 2. The equilibrium point E5 is stable if C0≤1  and unstable otherwise. 
Proof. When we evaluate the eigenvalues of (2) at E5 we obtain 
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We can see that 43 ,λλ  and 5λ are negative real numbers despite the value of C0. We can also see that 1λ and 

2λ  will be negative if C0<1. This shows that E5 is stable when C0<1. 

 Furthermore, 01 ≤λ and 02 ≤λ when C0 = 1. This shows that E5 is stable when C0 = 1. But 1λ >0 and 2λ >0 
when C0 > 1. Hence, E5 is unstable when C0 > 1. So, all the eigenvalues of the Jacobian model of (2) evaluated at 
E5 have negative real part when C0≤1. 
 
Theorem 3. The equilibrium point E6 is unstable if C1 > 1 and C2  > 1. 
Proof. When C1 > 1 and C2  > 1, E6 has at least one eigenvalue with a positive real part ( 24 r=λ ). 
 
Theorem 4. The equilibrium points E7, E8, E9, E10 are also unstable. 
Proof. The overall proof of this claim is analytically complex. Hence, we investigated this numerically using 
parameter values in Table 2. We obtain eigenvalues occurring as complex conjugate pairs. For each of the 
eigenvalues, there is at least one positive real part. Hence, E7, E8, E9, E10 are unstable irrespective of the value of 
C0. 
 

Parameters  Value  Unit Source 

1r  0.20 /week [5] 

2r  0.25 /week [5] 

3r  0.30 /week [3] 

1K  200 g/m2 [5] 

2K  500 g/m2 [5], [4] 

3K  800 g/m2 [3] 

1α  0.175 /week [5] 

2α  0.175 /week [4] 

3α  0.18 /week [3] 

1β  50 g/m2 [5] 

2β  20 g/m2 [5] 
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3β  80 g/m2 [3] 

1c  0.73 Dimensionless [5] 

2c  0.75 Dimensionless [5], [4] 

1τ  0.012 /day [3] 

2τ  0.014 /day [3] 

Table 2: Parameter values used for model simulations with their reference sources. 
 
To support these analytical results, we investigate the long-term dynamics of the model by performing 
numerical simulations using the parameter values given in Table 2. 

 

Figure (a)        Figure (b)   

                                                                            

Figure (c)        Figure (d)   
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Figure (e)        Figure (f) 

 

 

 

 

 

 

 

 

Figure (g)        Figure (h) 

 
3 DISCUSSION AND CONCLUSION 
Ecologically, from the stability analysis of E1, E2, E3, E4, we see that it is not possible for any or all of the 
resources and consumers to go into extinction. From the analysis of E5, we see that in the absence of consumers, 
the resources will simply grow to their carrying capacity. From E6, we observe that in the absence of the 
alternative resources (X1 and X2), the biomass of the consumers will be strongly affected due to intense 
competition. From E7, we see that in the absence of the common resource (X3), the consumers rely solely on 
their unique alternatives resources. This is not also feasible in a long term since they lack their main resource. 
From E8 and E9, we observe in the absence of any alternative resource (X1 or X2), it will force the particular 
consumer (Y1 or Y2) to rely solely on the main resource (X3). This will grossly affect the biomass of the main 
resource. From E10, we can see that over a long term it may be difficult to maintain the biomass of both 
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consumers and resources. In this work, our model shows that in order to promote long term coexistence, it is 
not possible for a consumer to completely depend on a particular resource.  
From Figure (a) and (e), we see that the increase in the biomass of the consumers shows the depletion of the 
resources. From figure (b) and (f), we see that in the absence of the alternative resources, there is intense 
competition on the common resource such that it is intensively depleted and this in turn affects the biomass of 
the consumers. From figures (c) and (d), (g) and (h), in the long run, the alternative resources begin to grow 
and so affects the biomass of the consumers. We also see that since X3 is the common resource, its increase in 
biomass is almost negligible since at any slightest growth, the consumers return back to feed on it again. When 
either of X1 or X2 is not available, it forces the particular Y1 and Y2 without this alternative to intensely compete 
for the main resource X3 thereby forcing either Y1 or Y2 to seek for the particular alternative easily enough. 
Hence, both X1 or X2 and the main resource X3 will be intensively depleted.   
Furthermore, we can see from Figures (a) to (h) above that at infinite time, the trajectories for both resources 
and consumers become cyclic or periodic. Hence the resources (X1 and X2) cannot be completely depleted as 
long as they are in the same ecological niche with X3. Their biomass can decrease depending on the 
consumption rate of the consumers, but as the consumers feed on X3, they have the opportunity to grow back 
again. 
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